Chapter 5 Appendix 8

ESTIMATION OF ³²P INDUCED IN SULFUR IN UTILITY-POLE INSULATORS

AT THE TIME OF THE HIROSHIMA ATOMIC BOMB

Sakae Shimizu Kyoto University

Toshifumi Saigusa Ryukoku University

For the estimation of ³²P induced in sulfur in utility-pole insulators three samples designated 407, 411, and 510 by Arakatsu¹ and Shimizu² were used. Ground range to each sample location (Figure 1) was reevaluated using the hyocenter determined by Hubble³ as longitude 132°23′29" by latitude 34°23′29".

A Duraluminum G-M counter with a tube of 12 cm diameter, 0.1 mm wall thickness, 40 mm effective length, and filled with air of 9.0 cm Hg plus ethyl-alcohol vapor 1.5 cm Hg was used. The natural background of this counter tube was about 18 cpm. Sulfur powder was spread uniformly in a paper boat of 3 cm by 2 cm and placed 4 mm beneath the counter tube.

Total detection efficiencies were estimated by Monte Carlo calculations (30000 histories), which included corrections for self-absorption of ³²P beta particles in samples and for absorption in the counter wall. The geometrical efficiency as follows:

- 1. For transmission of beta particles in material, a mass-absorption coefficient expressed by $\mu_m = 0.693/H$, where H is a half-thickness in mg/cm², was used. For ³²P beta particles (maximum energy is 1.71 MeV) H = 79 mg/cm² was used.⁴
- 2. For self-absorption of beta particles in the sample a formula

$$\frac{\left(1-^{-\mu_{m}d}\right)}{\mu_{m}d}\tag{1}$$

where d is the source thickness in mg/cm2 was used.

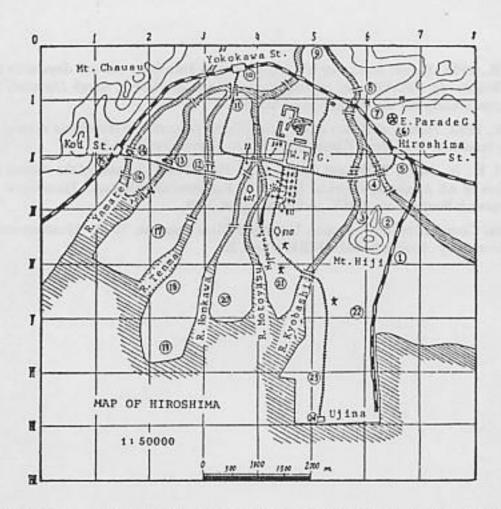


Figure 1. Map showing places where samples were collected on August 10th, 13th, and 14th, 1945

Table 1. Activity of ³²P in sulfur in utility-pole insulators in Hiroshima at 815 hours, 6 August 1945

Sample No.	Ground range ^a (m)	Sample weight (g)	Sample thickness (mg/cm ²)	Observed count (cpm)	Total detection efficiency	Standard deviation	Decay correc- tion	dpm of 32P per g of S _b
407	550	1.5	250.0	35	0.0454	0.00078	0.619	840
411	780	2.2	366.7	33	0.0327	0.00067	0.619	741
518	980	2.6	433.3	23	0.0280	0.00062	0.619	518

a. Error in distance was about ± 100 m.

3. Density of sulfur in the sample was assumed to be $\rho = 2.07$. As a correction factor for decay of ^{32}P ($T_{1/2} = 14.3$ d) an average value of those at 1800 hours 15 August and 1800 hours 16 August was used; 0.619 = (0.634 + 0.604)/2.

Using these conditions and assumptions the necessary factors and the final value of dpm of ³²P per gram of sulfur have been obtained (Table 1).

b. Error is estimated to be within ±15%.

References

- Arakatsu, B., 1953. Report on survey of radioactivity in Hiroshima several days after the atomic bomb explosion. In Collection of Investigation Reports on Atomic Bomb Disaster, pp. 5-10. Tokyo: Japan Society for the Promotion of Science.
- Shimizu, S., 1982. Historical sketch of the scientific field survey in Hiroshima several days after the atomic bombing. Bull. Inst. Chem. Res. Kyoto University 60:34-54.
- Hubbell, H. H., Jr., Jones, T. D., and Cheka, J. S., 1969. The Epicenter of the Atomic Bombs. 2. Reevaluation of All Available Physical Data with Recommended Values. Hiroshima: Radiation Effects Research Foundation, ABCC technical report 3-69.
- International Commission on Radiation Units and Measurements, 1972. Measurement of Low-Level Radioactivity. Bethesda, MD: ICRU report 22.