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EE AT
SUMMARY T &

A method of survival analysis using hazard
functions is developed. The method uses the
well known mathematical theory for Taylor
Series. Hypothesis tests of the adequacy of
many statistical models, including proportional
hazards and linear andf/or quadratic dose
responses, are obtained, A partial analysis of
lenkemia mortality in the Life Span Study
cohort is used as an example. Furthermore, a
relatively robust estimation procedure for the
proportional hazards model is proposed.

INTRODUCTION

Currently the analysis of survival data is a very
important topic in the scientific literature.
Assessment of radiation effects and cancer
research are two examples where survival methods
are used. The ability to incorporate covariate
information with survival history was greatly
enhanced by the introduction of the concept of
proportional hazards functions.! The enormous
amount of resulting statistical work is testimonial
to the need for such methods. Unfortunately,
there are many unanswered questions about how
these methods behave when the modeling
assumptions are violated. We posed such
questions while attempting to analyze leukemia
mortality of atomic bomb surviovrs. During a
preliminary analysis the proporiional hazard
assumption was seriously guestioned and we felt
that the usual method of stratifying was unsatis-

factory. Also, we felt the need to develop a
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formal test of whether data are consistent with
some type of a proportional hazards assumption.
A reviewer brought to our attention a different
approach to this ques.ticm.2

The genetral statistical development needed is
given below and, since it is extremely mathe-
matical, the reader may wish to read it in a
cursory manner and refer back to it while
concentrating on the subsequent sections.

It is assumed throughout that all denominators
are nonzero and the regularity conditions for
maximum likelihood estimation are satisfied.
The proposed model is developed usinglikelihood
ratio tests, however, other testing procedures or
estimation methods are equally appropriate for
this development.

NOTATION AND THE BASIC FRAMEWORK

Consider the situation of only one failure type of
interest. The generalization to multiple failure
types is straightforward and will be briefly
discussed later. Assume there are N individuals
at risk at time 0 and for the ith individual the
trple (t;, I, g,_i) is observed, where t; is the
survival or censor time, I; is an indicator of
censoring, and z. is a J dimensional vector of

possibly time-dependent covariates.

For survival time, t, and covariate vector, z, define
the hazard function, A(tlz), in the usual manner.?
Assuming the censoring is uninformative and
dropping the proportionality constant, the log
likelihood becomes

N
x [Iiln [?\(tilz.)]
i=1 ~i

Suppose that K(tlg) has three continuous.

derivatives in all (J+1) arguments. This
assumption is slightly stronger than the usual
regularity condition regarding three derivatives
normally required for maximum likelihood
methods.* Applying Taylor’s theorem® to
?\(tlg_) with expansion point (to ) yields

~0
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¢ is a point on the line segment connecting
(fo ) and (), and R(g, t, z) is the remainder term

ingolving third derivatives from Taylor’s theorem,
The parameters of interest are the coefficients
in (2), that is, &, B, etc. Since the expansion
point does not correspond to a “true parameter
value™ in any sense, equation (2} is an unusual
statistical usage of Taylor’s theorem. However,
as will be shown in the subsequent sectioms,
asymptotic likelihood ratio tests of various
statistical models can be constructed using
standard methods.

Unfortunately, without some additional assump-
tions regarding R{g, t, z) formula {2} is not
directly applicable in analyzing the hazard
function. A problem develops since maximum
likelihood estimates of the parameters must
depend upon the R(c, i, z)’s, even though the
parameters themselves do not. In order to
circumvent this difficulty, we assume the survival
time axis can be broken into disjoint intervals,
such that the remainder term is reasonably
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approximated on each interval as being cubic in
both survival time and covariate. Implicit in
this framework is the existence of a different t,
for each interval, say t,, for the kth interval.
For convenience, we take z o0 be the same for
all intervals; the extension to z,’s is trivial.
This assumption is based upon two beliefs. First,
Taylor’s theorem says that R( ¢, t,z}is exactly a
cubic polynomial in t and z, but where the
coefficients are proportional to the third
derivatives of A(tlz) evaluated at ¢. Thus, it is
felt that within intervals the highest order
terms, the cubics, will be a good approximation
to the remainder. Secondly, it is felt that within
intervals the highest order derivatives will be
approximately independent of ¢, especially if
the intervals are short and/or the hazard itself is
reasonably smooth.

Formally, for t in the kth interval assume

WISz QBMITE T 3O EEET 5. 2R
TRLREMEI R L 2t ATHEETS. WEATEK
R T t TH 5. z, REEALEMMTEL {,
2o, NDIEEREMTH S E L. CORHERRD
ZonEZHIETOTVE, B, F4 T D
EHTIER(e, t, )3t Bzt TIRIEL S
ZREBEATH ED, TOBAEEME ¢ HTHME
ALz OB S EM LB T5. LENF-T
MEMATRERBESRK, vihbZR0OEIEHKREC
EGEMT AL BbAS. BIICMBNTIE, #
FOMBAECIES, uliEnF— FEGHF2ED
OBREZTHES LB, BEEROBENN
Wi i L THILTWAELEbN 3.

XM, EkEMO iz owTIE

J
R(g t,2) = Rit (t—tok)’ + 2 Rizj(z—205)’ 3)

where Ry and Ry »; (1<j<J) are constants.

It should be emphasized that estimates of the
remainder coefficients contain valuable infor-
mation regarding the adequacy or “goodness of
fit” of an assumed model. For example, the most
general dose-response model considered sub-
sequently has a vanishing remainder tferm.
Consequently, a nonvanishing remainder would
indicate that the assumed class of models may be
inappropriate. Notice that jointly equations (2)
and (3) allow the integrals in (1) to be evaluated
in closed form and the result is a partially
parametric log likelihood. The parametrization is
only partial because the parameters are only
values of the unknown hazard function or its
derivatives at the expansion peints. Therefore,
certain attributes of the hazard function can be
examined with likelihood ratio tests without
specifying the hazard because specific models for
the hazard will require relationships between the
parameters of equation (2). Consequently, there
will be fewer ‘““free” parameters in the specific
model than in the general model and the likeli-
hood ratio test will depend upon this difference
in the number of parameters.

Suppose there are K intervals and N, individuals
at risk at the beginning of the kth interval. Take

ERETB. 2L, Ry BURL(1l=j=J )ik
ERTHS.
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Ngs, to be the number of survivors of the Kth
interval. Substitution of equations (2) and (3)
into (1) yields for log likelihood, €,

=€+, + -+

where !Zk is the log likelihood comresponding to
interval k. Each £, is based solely upon the N,
individuals at risk for interval k and has the
Ny +p survivors treated as censored at the end of
the interval. Thus, unless there are parameter
constraints across intervals, standard maximum
likelihood theory applies to each Qk individually
and estimates from different intervals are
asymptotically independent. Also, each Qk can
be maximized separately and problems associated
with large numbers of parameters are minimized.
For each interval, under the general model of

JA+7)

equation (2), there are 4 + parameters.

Hence, for likelihood ratio tests involving all K
intervals, the most general alternative model has

JI+7)
4+ 5 - K parameters.

In closing this section, we remark that the only
assumptions made thus far regarding the hazard
function are in regards to smoothness of the
function itself.

A PARTIAL ANALYSIS OF LEUKEMIA
MORTALITY

Here we demonstrate a partial analysis of
leukemia mortality in members of LS8 sample.
A complete analysis, using the T65 rewsed doses
(T65DR), is given elsewhere.®

All 79,856 members of the LSS sample who had
estimated T65DR were considered. However,
in this example each individual’s T65DR was
converted to an approximate Lawrence Livermore
National Laboratory (LLNL) dose by using the
most currently available dose information.”3

The principal aim of this analysis was to dlStln—
guish between the usual dose-response models’:

1L-Q-L (linear and quadratic in gamma rays and
linear in neutrons), L-L (linear in both gamma
rays and neutrons), and Q-L (quadratic in gamma

RERF TR 25-81

Ny Aed3. Ny, GEKMBOEFERTHB L
LT, FEXAQR EUB & (1 CRATI LR
2

Ry )

LHAE, REL, g BMBkIZHBETSHHALE
Chd. EH0 THBEKOBEASEN ADSHICE
S HEOTHN, No,, AOHEREIZIEH 0BT
BATT L0 L LTHRETS. LEHF

T, BMWEMIZE A5 13F 4 -7 —-OHBFE A
i, B RAERE A CHEATE, £L 5
WEiA BN AREREIEMIMTILALLDL
A, Eh, B EMBELERITAIILEANTE,
NI A—F—BNEnIth s ZREERIRIC
Wiohad. 2B T, HEXEL O—§F

J{I47)
%?»?mﬂﬁx—y—wﬂu4+—j;—ﬁﬁ
A, WIITNTOKBEOMEORERBEETE
J(I+7)
%ﬁ—%%&ﬁ%%fmﬁ[b&—3——]«m

DPAR I B R T Tl o 1

BRID, N FREBIIVWTHESE TIIATHR
AEHG, HEREOHESPSIHNTILODHT
HHZ EEBTEHEL.

Emrﬁtﬁw%%%ﬁ
ITRAMHEMNRETOHMKIEC RO S 5 HIT

2w Tii~a. TE HET4M (T65DR) * R

TAREABEMIOLTRHNET 5.8

T65 BWATHR (TEHDR ) H YL T 3 BGHEHNR
H79,856 A BEMBE LA LAL, REHRTE
ZEAD THEDRERIERNOHREEHLHA VT
Lawrence Livermore FFZERT ( LLNL ) @ & & 1258 {0
LEboiiFERL £.T-8

FREOFEHNZESOHRERBEFN, Tabs
LQL(FAv<HIiMLTRAERVFIANT, HiE
TFHIIMLTHE), L-LIFr>BRUTETED
MAEHLTHRE) REQL(FYvHIMLTIX
WT, PETHRCHLTHRIE EENTSILT



RERF TR 25-81 -

rays and linear in neutrons). In the complete
analysis® four intervals were considered, though
here we shall present the results of the first
interval {1 October 1950 — 30 September 1957)
only. Since the L-Q-L model includes the other
models as special cases, the hazard function was
assumed to be of the form

Atlz)=a+B,D+B,D* +

where D = (Cg 4 +(1-C)g,y)G'+(Cnyy+
{(1-Cny N’

= LLNL total dose
(Cgyg + (1-C)gog )’ (G')?
LLNL gamma dose squared
T65DR gamma dose
T65DR neutron dose
T65DR total dose

0, 1 for Hiroshima and Nagasaki,
respectively.

<
I

O eZzaQ
I

and

The g’s and n’s are T65DR to LLNL dose conver-
sion constants. The assumptions regarding D
and D? explicitly control for the dose conversions
and require the L-Q-L model to be the most
general possible. Mathematically, the model
in (5) is equivalent to

Atlz) = a+b,G+b,G* +b;N +

for G and N being ELNL gamma and neutron
doses, respectively.

t
The expansion point, [ ] , was taken to be the

(4]
Zo
origin and four covariates were used: LLNL
total dose {covariate #1), age at the time of the
bomb (ATB) (covariate #2), sex (covariate #3),
and city (covariate #4). Table 1 contains log
likelihoods and fitted parameters for a series of
hierarchical models. By the likelihood ratio
criterion, the best fitting model has only three
nonzero parameters: ¢, ¥;,and 6;. Note that
since the b's in (6) must be non-negative some of
the likelihood ratio tests were performed in a

one-sided manner. For constants g,., 81, N -,
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L&A, ZZCIkE—4ak (19504108 1 § ~19574¢
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effects and interactions % UF# 5. & B
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(Cn g4 (1—C)n,a)N’
=LLNL @ #FE
D? = (Cg, ¢+ (1—Clgea)? (G")*
=LLNL Oo# » =R "%k
G’ =T65DR & >~ wini
N’ =T65DR it ¥ it
d =T65DR #4it
C=IEB0, fKil
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effects and interactions & UHAE{EH
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TABLE 1 PROPERTIES OF FITTED HIERARCHICAL MODEL
1 BIERBBERET O

Number of Parameters Parameters Minus Log Likelihood

12 T B 1 Y2073, 85 €151

e, 811; RZI’ 13:1 1.113 661.0681
& ¥ ] 3 y Y H ]

1 efR":‘, pn 8- €1, M3 661.3441
7 Y1, 2. Mas 01, Ry, Ry 665.6681
6 &, Y1, M4, 91, Ry, Ry 665.7919
5 @ 1> T3, 81, Ry 666.1425
S @, Y1, M3, M4, 81 666.6200
4 o 71, M13s 0 666.6219
4 @, 7y,M14, 81 667.3301
3 @, ¥y, 0 667.3334
3 o, 713, &y 669.2085 -
3 &, Y1, M3 669.4125
2 &, 0, 669.2195
2 @, 6704748
1 o 732.3226

and n,., equations {2), (5}, and (6} imply via the g1.0ng BUN. W, HEX2), (5) RUF6) TIHEH
Chain Rule that ERAVIELRDLIILL S,

o= A(019) = background leukemia rate at 1 October 1950
1950108 1 Az 3 2 B A MFE

Nt iz)

M= 3D = [bl(cgl.‘l'(].-—C)go,)+bs(Cnl.+(1_C)no-)

(g)

~

+2b,(Cgy. + (1-O)go )2 '] ‘ ) = by go + b3ng.
0

92 A(tlz) '
e ~gpac | (@) bulEr T E0) + Oalny o)
and
s, 3*(tlz) o2
TA TR | (g 2R

~

Because of the linear relationships between

1 K b oy ¢ -
(7t,)and (E; ), and 0, and by, once the parame- () B U (50, EUIL 6 RU b, ORI HRUMHE
ters are estimated it is straightforward to obtain FHE2OT, NF7A—F—HHEETIABILbLOHE
the corresponding estimates of the b’s. HEBL RO I2OIMHETH S,
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TABLE 2 COEFFICIENTS OF THE BEST FITTING MODEL
#2 BBIEAVIEFVORLYE

Quantity

Estimate

ax 10°
SD (&) x 10°
by X 10°
SD(by) X 10°
by x 108
SD(b,) x 10°
by x 10°
SD(bs) x 10°
by
by
sp (L
&

log likelihcod

23895
07327
13222
07312
08972
03960
04740
02573

118.68

122.03

—667.3334

Table 2 contains the best fitting model’s estimates
by
of @, by, by, by, and the quantityb—22 This latter

ratio corresponds to the gamma dose at which
the quadratic term begins to dominate the linear
term in the hazard function. This dose is species
dependent but for mammals it is believed to be
approximately 100rad.’® It should be empha-
sized that simply divid/i\ng the estimate of b; by
the estimate of b,, b,, will result in a ratio
estimate which is biased by the amount

b ~
b—lVar(bz). The estimate reported in Table 2
2

(118.68) is bias corrected and in agreement with
this preconceived value.

THE GENERAL REGRESSION MODEL

As implied in the introduction, one purpose of
this paper is to investigate modeling assumptions
regarding the hazard function. In particular,
we are interested in examining how the propor-
tional hazards methodology behaves under model
violations.

In some situations it is believed that the covariates
affect the hazard mainly through a multiple
regression and the vector of regression coefficients,
b, is of interest. Call this situation the general
regression model and denote the hazard as

H2IEL & {BEETAHAEFVD by, b: B U by
m%%ﬁ%ﬁc%%&ﬁLt.%%wkm:mﬁ

HAF— FEEOBEHEL TR LB ILEDRHT v <
HEXHGETE. COBERIHBHOEKIILLT
RL 54, WHETIIHI00rad L ERT VST

b, DHEEIEE D, OREMTSS b THMIES L,

b, -
Fwnwnwﬁu;ofﬁnoiféﬁi&ﬁﬁa

haTesBALAZFRAELS 2V, F2ILRLA
fHEEM (118.68) RN #TELALEDT, ZO Tl
WE—FHT 5.

—fEREFIL
FMETBAELICEBOBME, N - FE#EIC
B4 A HEOTEFMMLZS>VWTEETSZTH 3.
iz, AT — FEATFLARAABEIIE S
Lo e@NLLIIFLYE S,

BorOo#ETCE, HFERREELTEERRE
EoTOhBNF— FERBESABLELGRTEH
D, NRFHEOXT7 ML FRLOHRLELT
WA, ZH LARBE-RERBETLERE, 0



Altlb z). Notice the general regression model
includes proportional hazards and log linear
models as special cases. '

The general regression model implies certain
relationships among the parameters of equation
(2). These relationships follow since some of
the derivatives in equation (2) can be further

detailed. For example by the Chain Rule Yk
becomes
o,
Y= Pt 3
ox azj

~

where the possibility of time dependent regression
coefficients (i.c., one type of time dependent
covariates) is expressed as interval dependent
coefficients. Methods for treating the by's
as explicit functions of time are given under
“Proportional Hazards Models.”” Assuming all
denominators are nonzero, within each interval
the totality of these relationships is for j#1#m

The subscript k has been dropped in (7) solely
for notational convenience and (7) is not
intended to imply a lack of time dependence of
the covariates. In fact, the null hypothesis of
time independent covariates can be tested and
the development within the proportional hazards
framework of such a test, which is directly
applicable to the general regression model, will
be detailed later.

It needs to be emphasized that the general
regression model implies equations (7), but (7) in
general does not imply the general regression
model. This follows because equations (7) only
consirain certain first and second partial deriva-
tives but it is only for those hazards with all
third partials vanishing that (7) implies the
general regression model.

A second point worth emphasizing is that
equations (7) and all subsequent modeling
relationships do not depend explicitly on the
chosen expansion points. In fact, equations (7)
must hold for all possible choices of the expansion
points. Thus, if the assumptions regarding

t
°%)
~0
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L LTI AR TN — FEF LI OB THN S .

TRTOFHHIFFRTLEVET S L, FHBATIR
ChoOMEOLEILjF1¥m T

¢

EhA. FTOHRFERIZT) CRECHILEOEE LHRE
L7boT, MREZEROBMEEF 2wt i
RTLOTIRE . BE, BB RERORERH
BRESTHRT, —HORETVICEHEERATE S
LY ABEOERFANY - FEERNTORRKITHRC
HET 5.

B ERE VSRR (7) SR, (7)1 %5 g
EREFLERIAVENIZEEHEAL T R
Exshve. 2O &, FRAMFE—RUES
HorEMmr T EEMTINTEIZSbNS. =0
DG EHMA YOIz - FOBSIZRY, (D
—BEREFVERTIEIIL S,

WET~EHE AR, ABAMEThePSET S
FTARTOEFVEELERLABHACE &N L
MEFELEZVWEWIZETH A, BE, FRERAM I
BIRGEOTNTOBMAILO>WTHATESZLO
ThHFhEE6%w. Rlg, t, z) TET A E A
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R(g, t, z) are reasonable, tests under most
situations should be insensitive to both choice of
interval and choice of t . *

Equations (7) imply within intervals there are
only (J+2) independent parameters among the
7’s, €8, 7’s, and &’s. For convenience, we chose
Yis Y250
Obviously, other choices are possible. Substi-
tution of equations (7) into (2} yields feor t in the
kth interval

» Yy, €1, and 0, to be these parameters.

SHMAELOTHNET, FLAEDRETIIENT
BERMBOBEIRE ta. OBIR O M Hloxd L THRE
ERIFLAVRTTH .

FRE|MN 5O TIE, HEAATE Yy, & 7 AV D
Mizizb¥Fr(J+2)HOBELFA—5—1L2%
v, {BEHE YL Yo Yo e B8, BT A—F—
LLUTER ER IroBERLTRTHS. HFEX
(M &2 I AT A ERBKHBD t 2

J
Ak (tlh )= g Bt -ty )+ j§]7kj (zj — zoj) + 8, {t—toy y

Ek1
+ = j§1 'ij(t—tok)(zj——zoj) +

g J
Ay E-:l'yzki(zj_zoj)2 *+ Ry, (t—

2

Also, for interval k and
Lhas. £k, BRKERY

8y = beginning of the kth interval

1. = 0 otherwise
ki .
0Lt
S, ift <8y
T | mintty, $4p,) if
i 8ker ) 1428y

N

i=1

B 53 vy @) 7 —7gy)
e ot |>j7k'j k1 \Zj—Zoj) (B —Zg)
3 ] 3
tow) +j§le2j(zj“zoj) . &)

EkMomED

(1 if individual i failed from the cause of interest during the kth interval
SrAEg I HRE  AHRET IR LS TRELEBRE

=2 [Ikiln [hk(TkiLb.. Z.V?] — [Ag(Ty;—S)

+ [ﬁk + ;—: éﬂkj (zi—Zo;) (Tki_t"k): ~ i —tor”

+5,. (Tki_tok)ag—(sk_tok)s Ry, (Tki—tok)44-~(sk—fok)4] ';9)
where A=yt é Tii (T~ 20j) T 2 é T YxiYwi (Eij—Zop) (it —Zo1)
=L, i=1 2 j=11>j

+ ::;I jil‘)’z kj(Zij-— zoj)2 + éleZI(Zij_zoj)a
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By equations (1)-(4) and (9), the likelihood
ratio statistic for testing whether the data are
consistent with the general regression model on
I(J+3)

5 -
degrees of freedom. If there isonly one covariate
the test is undefined because the general regression
model is undefined. Another model which can
be tested is whether a subset of the covariates
affect the hazard through a multiple regression
and the remainder of the covariates behave as
under the general model. The procedure for
testing such a situation is straightforward to
obtain and we do not pursue this issue further
(Example 1).

interval k is approximately x* with

Let us turn to the question of estimation in the
general regression model. We assume that the
likelihood equations (A.1 of the Appendix) have
an allowable solution in the parameter space.
Then, under suitable regularity conditions
standard maximum likelihood theory implies
that for large samples the maximum likelihood
estimates are consistent. However, it is not true
that the estimates of the regression coefficients
under the general regression model are consistent.
In fact, these coefficients cannot be estimated.
Nonidentifiability follows from the differential
equations themselves:

& = ?‘k(tok“.?..?uo)

RERF TR 25-81

HRA ~ ) RO SHOTE, AR kL
BHE—RERET N E—RTIPELERET S
J+3)

RERGHRE, HbE - — 2 TiEmE

¥ ThB. RERHN LG THAE, —AEE
EFMIEBTEAVOTRELERTEL V. BE
TEBEFME, REROMHHHSEERIE -
CAF— FEHEES L, 2OMORBRA R
SN OBELARORBERT AE#ERET 5
LOTHE. F0kI BRES AT 5 HHILEE
HEBLALZNTIZITHRINUESELEV(HL).

—ERE PV II B AHEEOMBIIB) fu. F
BT TR AEFER(RBA LN ST 4 — 7~
LHFETEIMEL LD ERETS. LAXST,
WO AEFHREEFOTCRRERLEERICLD
KEHEEMORAREMERE—EL TV 3. LA
L, —RAEBEFVCSLTHRBFEOBERL S
CELTwAbETEEN. EE, 006K
#ETEZL. ROaAFEAEED S I T FTHE
THB.

g o[ Phltho
k™ ot tok
(£
Yeim k| T x|t
o e) =1, T
5 " az'yk(tlx)
=1 —_—
k ot? t
;)
B2 (tx) )
ST ki [T
otox (‘éo‘lzio)
o b2, [ 9PN (thx)
k1™
2 ax2 tok
(b z ) 10
bz (10)
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by

~ byy

consistently estimated as the .ratios of the.
estimates of the respective Txj $- Howe/ger,hall
the information about by, contained in ¥y, €y
and ?kl is confounded with information about
partial derivatives of the hazard function. Thus,
unless there is some additional assumption
regarding these derivatives the ratics of the
regression coefficients can be estimated but the
coefficients themselves cannot. In general, there
are three estimable quantities among ¥y,s €y Oyp
and by, but the J-1 estimable Yig's i@ 2) do not
correspond to J-1 estimable by;’s (i=2). There-
fore, a reparametrization can make by, estimable

From (10), it is seen that the ratios are

but not by,, ..., byj.

There are situations where some of the ratios,
by

M are entities of interest. An example is
ki

estimation of the relative biological effectiveness
(RBE) of neutron vs gamma radiation. Call
gamma dose covariate number 1 and neutron
dose covariate number 2. If the L-L model is
correct and z,; and z,, are both zero, then the

b
RBE for interval k is precisely E“—’ (Note that
ki

these b’s are different from the b’s used previ-
ously). Furthermore, it is of interest whether the
RBE varies with time. This question can be
examined using the methods for time dependent
covariates to be described.

Example: Reconsidering the Previous Dose-
response Models

Under “A Partial Analysis of Leukemia Mortality™
the L-L, Q-L, and L-Q-L models were introduced.
However, because of the T65DR to LLNL dose
conversion, the actual model analyzed explicitly
included the dose conversion constants. Now
we will demonstrate how to test the adequacy of
the different models when the conversion
constants are not included. Discriminating
between the models is important because the
different models can give rise to substantially
different low dose results.” The models being
considered are: :

Mode! L-L
Q-L

10 7 5 LT RERTRO s ORERO LR

EBREERSZE AN B, LAL Y, o BY
s LA ENE b LT AT RTOWHEE, Ny -
FESE 455 MBI T AL BRSNS, LA
HoT, THhoOMME L TEICES DR
Mz 2ENE, EDRENOERIHETSTHER
HHateEEcE . —BEI %, Sa, fa
BUba OB REETEE=E008NS 34,
(J—1)RAOHEBETE 5 5; (j=2)i (J—1)BD
HETES byljz2)edBLiv. LidoT,
KNS A—F—DEERIZE>T b FHEETREIITSE
BH, bus,..., b BHETRIZTE 210,

Lt';—‘:m SEOMoMHMRE R SEXTHIBE

bbb s PHEFERAT Y ROBGOEWEHDE
H(RBE) D#EFEORTHS. FrvREOKE
BE 1%, hRETFREORERE2ZELTS. L-L
EFLHEL S, za Bz FHEHELEOTH N

MMﬁkanmEmEﬁnfﬁkﬁé(:hambm

BIEfticAwvwAib &dR%5). EIZ, RBE #EEN
LELT I HErCRENELRS, TOMBEE
BET MR EAERO LD OFETZAVTHES
ZZEHFTES.

ffl: SIROKRRREE FLOBRE
TAMFEFRCEOEFBF] R L-LEFL, QL
EFNMRETL-Q-LEFLESMNLA. LAL, TESDR
% LLNL @R ici8 T 3720, ERCERL-T TR
EHLPIIBRERERESAT L. Z2TH,
FREHFGETAZEALER I ETLOBEEHE
FWALKRET S, E2RT. RE3EFMIEHEN
TR I ELEBERFELITRIENHLOT,®
EFAORNEIBEETH L. ERTIEF VG

A(tlz)=a+bDy +cD,
Altiz) =a+b(Dy) +cD,

L-QL A(tl2)=a+ b, D, +b,(Dy)? +cD,

where Dy is administered gamma radiation dose;
Dy is administered neutron radiation dose; and

12
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TABLE 3 PARAMETER RESTRICTIONS FOR ALL T#
#3 FTRTOT"LMT I TA— 5 —DHIER

Restricted Parameters
Model M2 o b2 Ry for K Intervals
L-L 0 0 0 0 5K
QL 0 n 0 0 SK
2zq1
L-Q-L 0 0 0 4K

*Tabled values are the values each indicated parameter must equal for each value of t.
HEOEE, ThFUORTHAFA—S—-FE e DEIZHALTHEL DT L5 20,
The blank cell represents an unrestricted parameter.

HRIBIRER T2 0AT R ¥ —,

the a’s, b’s, and c’s are regression coefficients.
Also, the a’s may be dependent upon other
covariates. The restrictions under each model for
all t are shown in Table 3.

The likelihood ratio statistics for these models
against the general model have degrees of
freedom 5K, 5K, and 4X, respectively.

Two slightly different testing approaches to this
example could be taken. One could test the
L-Q-L model against the general model and if it is
* not rejected, the other models could be tested
apgainst it. Alternatively and/or complementary
to this approach, one could test within intervals.
This procedure would be to test for each interval
the L-Q-L model against the general model with a
x? variate. If L-Q-L is not rejected, then other
models could be tested against it with X3 variates.
Other modifications are also possible,

PROPORTIONAL HAZARDS MODELS

We now turn attention to models based upon the
proportional hazards assumption.' There has
been an extensive amount of work based upon
the partial likelihood® We shall demonstrate an
alternative approach using the full likelihood and
the Taylor series approximation of equations (2)
and (3).

The most general form of the proportional
hazards assumption states

Altlz) = A, (e(z,, .

for some functions A, (-) and g(-, .. ., -). How-
ever, proportional hazards has commonly referred

BagshihhETHE, a, b AUV c EERERT
b3. A, aRBEroRTRIIKEFETSIELN
T, BEEFNIZBIEI3TNTO tOHEEEI L
&L~

CHREDEFAMO—REFIVIINT IABELENR
EhFhaHEsK, 5K, 4K & % 5.

ZORIIMLTR oD LB IRMEEEHAVS
2EHTED. —oiR—BETFMIMHT 5 L-Q-L
EFNERETILOCT, EPshiihiEthns
fDEFLEDREETIZLHITES. ZOHE
ER—H, ZLEzoFBELHL THENEHE
LLTHBEHARE S 5. ZOFBIEHBIZ>VT
nZERRAVT—#BEFLVIHLTLQLEFL
ERETALOTHSE. L-QLEFAIEHEL
BURE, N ERFHACTREPOE TNV ERE
TES, COEPOBEELEERETH 5.

BAINY—FEFN :
KIZHFAANYF— FEECEITEFVIIODVTERE
TAIESRBEIR I ATEHE LENT &
VG ERETECHSEEEERFLIARRQ AUB)I0
T4 7 -BEGEPEERHwEbYOFHEERT.

WHnF— FEFORL —BOHZEE, 20D
A% Al ) R gy} 220 T

vy z]) (11)

tEEhs. Lal, KEA Y- FIARLER
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to the situation where the covariate function,
g+, . .., -), depends solely upon a linear combi-
nation of the covariates. Thus, proportional
hazards has routinely meant

B g ey, ) ARTROBEREZOLIKFET S
BA&IIBTIHEAE. LEN-T, EANY— FIE
CME AL BUgl) 0w TEE

Altlb 2) =X (De(b 2) _ (12)

for some functions A, (-} and g(-). We shall
follow this convention and refer to (12) as the
proportional hazards assumption. Notice that
equation (11) is testable because it implies for
all t

B

€ =—";
T Tl

We do not pursue this peint further.

Tests of the Proportional Hazards Assumption
Since equation (12) is the special case of the
simultaneous occurrence of the general regression
model and equation (11), proportional hazards
implies the simultaneous restrictions of both
equations (7} and (13). Notice there are no
restrictions on the covariate function except the
regularity conditions.

Substitution of (13) into (8) yields for t in
interval k

LhB. EEHTRIOERIE TRENF—F
FgeLTan #31BT5. AEAMETIATO LIS
LT

i=1,..., 17 (13)

THENT, BMETHETH A LITEREALY.
TOBEIZELTERCRMERERL 2.

HfNY— FIREOEE

FER 12 F—BEREF L & HRER 0 2 ERIZK
TEEOIREABEEOT, RN - FEHERX
(7) B U003 oA & R HlEET 5. ESMESREFLL M
CHERBEHIC T SRR E V.

1) # @B kAT 2 kD e T

J
Ml 2)= i+ B (1=tor) + Z g7 801 lor

By ) 20y, 1=t
+a—k(twtok)j§1'rk,-(zj—zoj)+_-2-— Z 2 YyiYu G20}z —2Z o)

akl

)
Y k1

+

for oy = Ay (to alb, 2)
EL ,
B = Xt )82, %)

Tii = Prjto o) (B2

T §71 1>

i) 1
2 2 3 3
szil'yjk(zj—zoj) + Ry, (E—tgy) +j‘=.«.‘fle2j(zj—zoj)

j=1,..., 1 (14)
by = %At el 2 )
Bkl = %bil 7\0 (tok)g"(bk.z.o)
~ 1 "
Ry = gho (tor)ell, 2 )
U .
Ric2j = g Pkid, (toi)8” (0, 2) i=1,..., 1.
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Substituting the explicit dependence of the ARV RV gD ITHBILEBET AN A-F— & 12
parameters on 7\0 () and g(-) into (14) will show KAT3E, BAeTEIBROTH HF hzllda T
with the exception of the remainder term that -

(14) depends upon the covariates solely through HERUHMTEKFT 5.

b2

The likelihood ratio test of the proportional Bl — FIRBORIEIRE S H RS SR—H
hazards assumption is dependent upon the BHik-TRELS. KbIOHEF—HREBRET I

alternative hypothesis considered. If the alter- ThHNE, FEXD TE—>OWEY =0 OB
native is the general regression model, equations . . .
(13) vyield oﬁly one additional constraint per EHE T H-2THS. LT, KED K
interval. Thus, for K intervals the test statistic DORERMBIIT 2 L 45 —HETLVERAVS L,
is approximately sz. If the alternative is the 43 )
general model, equations (7) and (13) total FREXD AUV CEIEME G ——— —
3(3+3) 2

2

—. 1 restrictions perinterval. Interestingly,
. 5P : ely 1OBRE 2 5. BHOI LI, LA AR H
with only one covariate proportional hazards is

testable because {13) must still hold even though ERENTVELTHWRRITHBTENT,
equations (7) are undefined. Also, as before —oOXEREHW LG TCEANY— VIXRE

these. tests can be' performeq on subse.ts of CEA. Eh, REREAHIICNSOREBRER
covariates and on an intervat by interval basis. ~
DAEFIZONT, T, BEHMILIZLITL S,

Tests Related to Proportional Hazards
Once it has been decided that the data are EHENF-FICEAETSRE

consistent with a proportional hazards model, it B A — FEF VBT B2k ARET A

is interesting to examine if the regression coeffi- _ . s
cients vary with time. The corresponding null J, DRERIERNELT BT, EHNSL

hypotheses can be tested because (14) implies HEWV. W45
Yii _ d . _
= Pkj [_(Tf( 11'1g(x)|x=l)'k-z“0 j=i,..., I;k=1,..., K (15)

Thus, for interval k ' ThINT, HETIRERRIRETES. LA
: HoT, MEkizsVT

Txj = Cki% (16)

and to test for a time independent coefficient &Y, BER] LoV THEKTERERET S
for covariate j is equivalent to testing cy; being . o . L
constant over time. Numericaily, this tleqst may TEi, BRHIE-ETHD o ERETIZEL
pose some difficulties because it will require the ELo., COREUR22HBLEOFEFE2LE L
evaluation of the entire log likelihood. Fortu- T20T, BENCETHESSHFE 2 hbLAR
nately, there appears to be at least two possible

solutions to this problem. First, if a Newton- V. LaL, gugz iz ioMBEIBLTESE
Raphson type algorithm is to be applied, the CELTOOBBREFHIEITHS. B,
method discussed in the Appendix can be used Newton-Raphson BI7 LX) XL &EAT 3 &, 143
with some modifications. Since good initial . . .
values will be available as the maximuxi likelihood THRHLATHERTHREL TROSILHFTES.
estimates needed for the tests of the pronortional Bl - FESE (MR OBRECLELREALE

hazards assumption {(above), this approach  FE{HE s L TLWHHEAEMATE 20T, Hessian

appears feasible if the Hessian ‘matrix can be AT E AL, COBFEEERTESEDhA
inverted. A second approach is to utilize a

Monte Carlo optimizer with these initial values. 5. BIOFERIINSOHMEL & B IC Monte

We have had reasonable good experience 1 with CarloBil{tE+*fMATLIZETHE. EESIE

15
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one proposed by Bremmermann.'? However, a
major disadvantage of this latter approach is the
lack of an estimated variance covariance mairix
for the estimates.

It must be emphasized that the three festing
procedures considered thus far for proportional
hazards are independent of the covariate
function. We now consider testing the adequacy
of specific choices of this function. From
equations (14), it follows that without specifying
some properties of the A, (-) function all
information regarding the covariate function in
the Bi.’s and §,.’s is confounded with information
about derivatives of A (). However, there is
useful information contained in the ay’s, Yi's
and 8yy’s which can be extracted. Usually, a
specific choice of g(x) will constrain only 6, but
this may not be true in general. Three examples
of g(x) are eX, 1+x, and cos x+sin x. Fog these

Y
— 9,
2(Ik

2
_ _}ﬁ, respectively. Thus, the test statistics for
Oy

choices the restricted values for 8y, are

these choices of g(x) against a proportional
hazards model each have X%, distributions.
Notice there is no formal method for deciding
between two ‘‘acceptable” choices of the
covariate function if both functions have the
same number of restrictions. This problem is
common to the partial likelihood methodology
as well,

Estimation Under Proportional Hazards

For the general regression model, it was shown
that the regression coefficients could not be
estimated without an additional assumption
regarding the hazard function. The proportional
hazards assumption implies

2
9 e

Aitlx) =

A1 12— (t0]
ox

Bremmermann? @BE L A HEEFHAWTHZ D L
BERBAMN OBESOFEOEERATHER
LT AHETR - RERGAF LV ETH S,

CHETEELTEAZSSDORFANY— FREHEIL,
HERMBICREL TRV LABEL TE, D
izl oEERRo#EN
OREE2VTELS. FEAW S5, i) M
OFkorOBESIEEL 2T, A KRY A1
BHAETRMBEICIHT AT STOFMRS 4D
EMBIZOoWTORREBRsha LT85 LA
L, @, ¥ BU O IZETRETE 5 HMD LHES
AEhTVs. gx) OHFERRIT 6, 0H Y
TaoEAEny, BERMCEITHILEETN
gwv. glx) D= 20FF ", 1 +x Elcosx +
sinx CH3. TAGOBERIZHLTIE, f, OHIE

a5 &,

ffﬁ;;t%h%‘h;—i‘k, o, —Ey%;’('ﬁé. Li=Aat,
Chbg(x) BROZFEMNAY - FEFLIZT S
BMELRL yAHEET 5. EERMHO -2
OlHFETs 3] BF20TId, RFIREOFHIR
FL0BACASERETIRAMEFEIZ 2.
COMELErEERCLEATS.

HENAY—-FICET2EE

— AT TN, - FEEICELTE I —2
DREFEF e EARERIBRETE LI LIRS
Nro. EAY— FEBCW

¥, X an

otdx

which yields equations (13) and is sufficient to
guarantee identifiability of the regression coeffi-
cients. The identifiability follows because the
general regression situation is analogous to having
one varable more than independent equations
and (17) is the additional equation. Unfortu-
nately, any nonzera solution to (17) is a
proportional hazards model and thus (17) does
not yield a richer class of models than propor-

16

Adtix)

LRy, chh s HER FE»AT, BHREHED
HAHNTETHL LA HEMAsh 3. HBIA TE
LasoE—HERREN B FRERXLIVBL I
—DE{PERELoTWAZ L ERAKTHD, Z0
FEARFWVTHS. B eic@ofotin
BITERAF— FEFVTH D, WD IREHN Y- F
EOEBAILEIFAQETFVERLZIER R, LA



tional hazards. Hence, if the proportional
hazards assumption is violated within the class of
regression models, one should seriously question
the estimated values of the proportional hazards
regression coefficients. ’

Surprisingly, in addition to the various testing
procedures already discussed the Taylor series
methodology yields maximum likelihood esti-
mates of the proportional hazards regression
coefficients which are fairly insensitive to
particular choices of the covariate function. This
insensitivity is in direct contrast with methods
based upon the partial likelihood, which are
known to be sensitive fo particular choices of
g(x). This sensitivity follows because the partial
likelihood is explicitly dependent upon the
chosen g(x) function!® and if this choice is
incorrect, standard maximum likelihood theory®
implies possibly inconsistent estimates. In
contrast, the sole dependence on the cm;?riate
function of the Taylor series estimates, byj, is
through the derivative on the right hand side of
{15). Without loss of generality the z Jector can
be taken to be the zero vector and then the
dependence is via

d
—1 X
™ n g(x)

Thus, within a set of covariate functions with
equal values of (18) the ’ij‘s are entirely robust.
Five disperate choices of g(x) with equal values
of (18) are ex, 1+x, cos x +sin x, (1—x)~', and
exp{e*).

A second estimation area where the Taylor series
methodology introduces an approach different
from the standard one is in choosing time
dependent coxaﬂates. For any particular
covariate, the ¢y;’s based on (16) and (18) can
be plotted vs time. From the resultant graph, a
functional form in time, such as log t, for a time
dependent covariate can be ascertained. As
before, this ascertainment can be done without
specifying the covariate function. Also, likelihood
ratio tests can be constructed to test the adequacy
of the chosen functional form. In contrast, itis
common practice with partial likelihood methods
to choose functional forms which augment the
chosen covariate function. Clearly, the adequacy
of these choices depends upon the chosen g(x).

17
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HFol, L LHEIF— FREFEREFLVOY 7 A
RTHhAIE, WA F— FEBEEOHEEMC
SuTRVBICEBWELADITLES 20,

BAmez i, BMIMY LA ES DREZEDE A
2y 747 -BEBEILAZEMMEORERRCHL
T, 2L VBECECRANY - FERERO KA
LEHERLMEENS. COBRENEXIE, gx)d
BERRCHL CBEANBVI LTRSS ATV AES
LELCEIS R ERN G ELZLTVS. &E
DHEORENFUOIL, HaLEFERsLAL
() MBI BHS P IIKFELTEY, P ZOBRRY
ELS Zrhif, SERAEHRS CL3HEMR
HESC—HLAVLOLEZD5THD. —H,
74 9~ BEHEER by OBIRE ST BI R
TENRW0EROBMMEBLTTSE. —kik
BFHRLFII o7 PLE¥URIILVEEIS N
50T, HKFR

(18)

x=0

k233D L83. LEF-T, BOZFLVHE
LORERMBO—HOP TR, b BEEITAS
AbCHE. BEHELVEEL2g(x)DTIEOD
disperate R (X e*, 1-+x, cos x + sinx, (1—
x) 1 BtFexplex)Th b, .

FA T —BEBETHEENLOLUERGE I FEFEA
ShAE_OHEDIThh 3 55Tk, BRKEE
HEROBIRTH S, FOEF2FERTERIIOVT
b, 00 RUY CHET o BHMIIHLTTT b
TES. TELETFI7h56, REREREERC
DB Tlogt MEIZEEMICHTIHAEBREHES
TEL. ROBEELEEH, CORBEEERME
FIHELALTHLTERS, 3/, REILEELRR
LAMBEROBEGEFRETILDIERTE 3.
—7, BRUAXTERMH - BHHEEBRL2ER
TaIkE, BHEERCHEEBELAFETSE.
SDRIROBEASHEEHS MZRRL g (x) 1I2IKRTF
LTwa,
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CLOSING REMARKS

We have attempted to outline a general testing
approach to analyzing survival data. Obviously,
the developed techniques are dependent upon
the assumption regarding the remainder term in
equation (3). In our opinion this assumption
combined with the interval approach is reasonable
for many cases, Furthermore, the method could
be modified to include the entire third term of
the Taylor series and then assume the remainder
is negligible. Given a large data set and good
computing facilities if J is not too large this
approach may be feasible. However, there is a
point where accuracy within a statistical model
exceeds the accuracy of the model in approxi-
mating the real world situation. Clearly, these
types of decisions should be made on an
individual basis.

With competing risks, it is well known that the
log likelihood becomes a sum of cause-specific
log likelihoods. Thus, extending the Taylor
series methods to competing risks is very easy.
Unless there are model constraints on the
parameters across failure types, the analysis
proceeds failure type by failure type and there
are no additional difficulties.

Interestingly, if multiple risks can simultaneously
cause failure, then constraints across these failure
types can be utilized to develop tests of inde-
pendent competing risks.!!

In closing we point out that the Taylor series
approach is sufficiently general to include many
situations not considered here. Three such
examples are multistage failure models, Markov
Hlness-Death Models, and stratification within
proportional hazards medels.
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APPENDIX
f+ s2

The purpose of this appendix is to demonstrate a
computer adaptable method for obtaining first
and second order partial derivatives of the log
likelihood. The method is to first obtain the
derivatives under the general model and then use
the Chain Rule from Calculus to ‘“‘correct” for
other models. We consider an arbitrary interval
k and use the notation of the text.
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Consider the general model. For log likelihood, —HBHLEFNMEEZTH . HHEE 2
Ry, the first order partial denvatn'res are: T, B 1SS EMEERDE BYTh B

Mg W Fr s
doy, =1 ATz Tisp kUK

aﬁk i=1 Rk(TklIz ) ki~ i=1 ki ok k ok
o N .
o - (25— 2o5) = 2, (5= %03 (T —Si) » i=1,..., 1

k=
3k =1 M(Tylz,)

8%, N I; 2 1 N

-2 — (T~ toy)® — (S—toy P
08y i=1 A (Tylz) Tii~tor) 3 i=1[( ki~ for)” ~ (S—tox )]
0%, N i

I N
- 4 2
aekj _i=] Ak(TkiL%i) (Tkl k)(zij—zoj)—%El(zij--zoj)[(Tki—tok) H(Sk“tok) ] N
=1, )

0 _ ¥ Iy
My i=1 M(Tyglz,)

(25— 20317 — 20 ) — E (Zi5—201} 2y —2g HTy;—8g), 1gi<l g} (A1)

0% _ N I
aﬂkj i=1 hk(TklIEi)

N
(Zij—zoj)2 — i§1 (Zij'-'zoj)z (Tki—Sk) ) j= 1, PR J

W N I

N
_— 3 _1 — d _ a4
aRkl i=1 Rk (Tkll (Tkl ) Aigl[(Tkl tOk) (Sk tok) ]

a% N L.
k =3 ki (Z
aszj i=1 Rk(Tki Ei)

N
Zoj)’ -i§1(zi.i“zoj)3(Tki_Sk), i=l,..., 7

Notice that all derivatives are composed of two MU 24 <T o0 5K - FizEEdE
sums. The first sum involves the reciprocal of ’
the hazard of only those individuals who fail =~ C® 3. B 1 ®HERMk @ cause of interest I-
from the cause of interest during interval k and EELAVWEDARADAY — FOMBEEEL, 20
the second sum is a constant. The second sum,

which is based upon all individuals at risk at the VS EHTH 5. Bk EFHORMOWDH DHUKHR
beginning of the kth interval, needs only to be 2IIES{B2OME, 1HO&FHEhI0E
evaluated once. Thus, for a derivative-based : R N .
iterative algorithm the hazards of those indi- 2o LCEF I THBIBZEICRETLTY XA
viduals who fail from the cause of interest in 122w Tlt, ER k@ cause of interest IZHEAL &
interval k need to be evaluated only once per WMEONY— Fit, RESA) 1AL IEERE A
iteration and then the reciprocals multiplied by

the proper factor for each derivative. For those BEUBRNFHN, RUTHERIEBHU I L 1zdS
individuals who do not fail from the cause of ZEHRTRLLISENES. ZOEBIZEVT cause
interest in the interval there is no computation . .. . . .
required once the constant sums have been of interest (2 &L X EHLZOVT, EHET O
computed. EEVFETH+hRIFEOLEBER A
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After the first partials are obtained, the second
partials follow immediately. Let p; represent
parameter number j in the general'model. Then

8%, N Iy

HioHaHFBshse, B2085EERIIHEL.
p; M—REEFLONAIA—F-FF i 2ETHO
et hi,

N (Tilg,)

k-3 :

where const (p;) is the constant sum in the
derivative with respect to pj in (A.1). It is easily
verified that for parameters, p, and pg,

& L - ki

N L

— const (p;) (A2)

7272 L const{py) i, (A1) 18T 3 p; [l -
HMEOERORTHS. T A—-F—p. B pa 12
SnTlE, ROZEHFERIEMHENS:

M (Tyifz) N (Tylz))

apraps i=1 hzk(Tki(Ei)

Equations {A.1), (A.2), and (A.3) in concert are
easily implemented on a computer. The second
order partial. with respect to p; is obtained by
setting s equal to rin (A.3).

Now consider how to “correct” the derivatives
for the other models. We detail an example for
proportional hazards which is indicative of the
general procedure. Equations (5) and (11) imply

By
€kj = — ki
] ak
TijTk1
Mji=2—— O
Tk
2
B, ﬁ‘i] B,
7 7 1

For j>1, the Chain Rule yields

(A3)

op; dp

FEA(AL), (A)RTANEVTFRL I
Vo —THEBIHETES. p LETIHE2M
NBFRs FAERAZOor CHEHATHREES
3.

T, FoBhOoOEFMIZOoOVT IV EBEESY
“ETE T AsrEELEG. —RPEHEERTEA
NF—FO 1EIz2wTEET 2. HFEXAGIEU 0D
I, RO EERET 5.

=100
»1gi<ig)
J=1,..., 7.

P> 1Bk, EEENCL-TTRESBELNS.

AN(Tiegfz,) _ 0 (Ty2,) + B Oy (Tyilz,)

A’ykl a'yk_‘

Bkl

+2 z

N (Tyiiz,) +2 Tiifii M (Til2)

oy o€, i

(A.4)

2 l>,7k]
Yy 7!

where the left hand side is the “model corrected”
partial derivative of Ay(Ty;|z;) and the partial
derivatives on the right hand side are obtained
under the general model in equation (A.2). The
proposed procedure is to evaluate the derivatives

CLINTI 1 0y;

2L, EE A (Tula) O EF MEEET 2"
HAEMETHY, HROHFEMEEHIER(A2)
O—ERITFMIE-TBLN S, T THRNE TR
B, SRCETs—RBNEFMIIL 2 THY—F
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of the hazard under the general model for each
individual and then *“cosrect” for a specific
model as indicated in equation {(A.4). Lettingn
be the number of parameters in the general
model, the Chain Rule yields

RERF TR 25-81

OEEHAFEL, FAHFBRR(AL)IRLARHE
OEFLIOBT"BE ¥ 732 THE. —M
EFMIIET ST A-y— D e & T, EH
ALk~ TROLIIZES.

MN(Tilz,) N o N (Tyg2,) (A.5)
Ap, j=1 0p, ap;

AR N I, AN (Tyiiz) N | op.

k=% ki T - b const (p;) (A.6)
Apr i=1 lk(Tki|E.i) Apr j=1 apr
and i "::p
RS B BN(Tgz) | | AT pz,)
Ap, bpg =1 A% (Tyglz,) Ap, Apg

n p; N I.:
3 t o) & — (A7)
T [cons (py) Z )\k(Tki|£i) ]

Therefore, once equations (A.1), (A.2), and
(A.3) are implemented on a computer, the
“correction” equations, (A.5)-(A.7) can be
implemented with only minor difficulty.
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