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Technical Report Series

Joint Analysis of Site-specific Cancer Risks
for the Atomic Bomb Survivors$

Donald A. Pierce, Ph.D.?%; Dale L. Preston, Ph.D.?

Summary

Statistical methods are presented for joint analysis of site-specific cancer
risks for the atomic-bomb survivors. Previous analyses of these data, aside from
those on leukemia, have been made either without regard to cancer type, or
separately for types or classes of cancers. Clearly, analyses without regard to
cancer type are less than satisfactory. The primary advantages of joint, rather
than separate, analyses are that (1) models can be fitted with parameters
common to cancer types, which can allow more-precise estimation of effects of
interest, (2) significance tests can be used to compare type-specific risks, and (3)
a clearer understanding may be obtained of risk-modification factors such as
sex, age at exposure, and time since exposure. Joint analysis is straightforward,
entailing primarily the incorporation of another factor for cancer type in the
usual cross-tabulation of the data for analysis. The use of these methods is
illustrated in an analysis of three categories of cancer studied by the fifth
Advisory Committee on the Biological Effects of Ionizing Radiation (BEIR V):
digestive, respiratory, and other solid tumors. Based on this analysis, some
criticism is made of the BEIR V-preferred models. Since the proposed methods
are applicable to models for either relative or absolute risks, some comments on
the use of explicit models for the absolute excess risk are also given. Although
some of the gains from joint analysis are apparent from the results here, it will
be important to use these methods with a more suitable choice of cancer classes
and for cancer incidence data in which the diagnoses are more accurate.

Introduction

Previous analyses of the Radiation Effects Research Foundation (RERF) data
on excess cancers other than leukemia among the atomic bomb (A-bomb) survi-
vors have been done either for all cancers together or separately by cancer types
or classes of types. In this report we discuss methods for joint analyses of data
on several specific types or classes of types. Although results are given for three
classes of cancers considered by the fifth Advisory Committee on the Biological

$The full text of this report will not be available in Japanese. Approved 19 November
1991; printed January 1993.

2Consultant, Department of Statistics, RERF, and Department of Statistics, Oregon
State University; bDepartment of Statistics, RERF.
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Effects of Ionizing Radiation (BEIR V),! the primary aim is to indicate in a more
general sense the advantages of such joint analyses. These advantages include
not only improved comparison of general levels of excess risk by type but also
opportunities for better understanding of variations in risk with sex, age at
exposure, time since exposure, and age at risk.

Much of what is known about time and age patterns of excess risk in the RERF
data has been learned from analyses of all cancers, except leukemia, as a group.
We will refer to these as pooled analyses. In particular, this approach has
indicated that, for a given age at exposure and sex, excess cancer risks tend to
increase with time (or attained age) in a way similar to the increase in natural
background risk with attained age. Also, it is suggested in this broad analysis
that the ratio of sex-specific excess relative risks is reciprocal to the ratio of
sex-specific background risks, so that the absolute excess risks for males and
females are generally similar. Reports of the United Nations Scientific Committee
on the Effects of Atomic Radiation (UNSCEAR),? BEIR II1,° and RERF,* although
using some analyses by cancer type, have relied mainly on pooled analyses to
estimate overall risks. The BEIR V report! made extensive use of separate,
type-specific analyses.

Analysis of all cancers except leukemia as a group is unsatisfactory in many
respects. However, inferences regarding specific cancer types, or even classes
such as respiratory cancers, are generally limited by the smaller number of cases.
It is especially difficult to draw reliable conclusions about patterns of risk with
time and age. Even differences by cancer type in general levels of excess risk,
without regard to sex and modifying factors, are not well estimated. It is clear
that the best approach, so far, has been to combine informally what can be
learned from pooled analyses of all cancers with the apparent distinctions that
arise in site-specific analyses. The right balance in this compromise, however, is
difficult to achieve.

In this report we demonstrate a method for joint analysis of data on various
types or classes of cancer. There are four primary advantages of such analysis,
relative to either pooled analyses or separate analyses by cancer type.

1. The ability to formulate and test unified models, which may improve
understanding of the effects on excess risk of sex, age at exposure, and
time since exposure

2. The ability to fit models in which some parameters are common across
cancer types and others are type-specific, which allows formal tests of
hypotheses about similarities of various types

3. The availability of significance tests for comparison of type-specific risks,
which makes it easier to appreciate the weakness of apparent contrasts
between risk estimates obtained from separate analyses

4. The ability to use doses appropriate for each type of interest, which is not
possible in pooled analyses

Joint analyses in which no parameters in the excess-relative-risk model de-
pend on cancer type are equivalent to pooled analyses, except that it possible to
use type-specific organ doses. At the other extreme, joint analyses in which all
parameters in the model are type-specific give rise to the parameter estimates
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that would be obtained from separate analyses. However, unlike separate analy-
ses, joint analyses provide for formal comparison of type-specific parameter
estimates.

QOur approach is contrasted with that used in the BEIR V report,! which
included separate analyses of leukemia; respiratory, digestive, and female breast
tumors; and other solid tumors. Since female breast cancer appears to have
special distinguishing features and the leukemia risks are quite different from
those for other cancers, we have limited our analyses to the categories for
respiratory, digestive, and other solid tumors. The categories of respiratory and
digestive cancers were selected by the BEIR V committee because of the limited
data on subtypes and the increased likelihood of errors in the cause of death as
stated on the death certificate if finer categories had been used.

We intend to apply these methods to the tumor registry cancer incidence data,
in which diagnoses are more accurate, and to use other classes or types of cancer.
It may also be interesting to consider classes defined on the basis of the similarity
of tissues, rather than on physical proximity.

Materials and Methods

The data used here are those of the Life Span Study (LSS) Report 1145 in the
format provided to the BEIR V committee. This data set, which is available on
computer diskette from RERF,* summarizes cancer mortality during the period
1950-85 for 75,991 members of the RERF LSS cohort for whom dose estimates
were available in 1988. Roughly half of the survivors in the cohort had significant
exposures, whereas the remainder is a comparison group of survivors who were
in the cities at the time of the bombings but received little or no radiation
exposure. The data set contains the number of cancer deaths and person-years
at risk cross-classified by city, sex, 10 kerma exposure categories, 5-year intervals
of age at exposure, and 5-year intervals of follow-up. This cross-classification
contains 3399 cells with nonzero time at risk. Other covariables, such as cell
means for gamma-ray and neutron exposures and mean age of those at risk, are
also provided.

Summaries for the digestive and respiratory cancer categories are given with
precise definitions on the diskette. The other-solid-tumor category is here taken
as the remaining nonleukemic cancers, excluding cancers of the breast, ovary,
and prostate. Although one might wish to exclude other sex-specific cancers, the
three excluded types are the only sex-specific cancers described on the diskette.
Since our primary focus is on methodology and since we would like this analysis
to be reproducible by others, we have limited attention to analyses that can be
made using publicly available LSS data. Except for the exclusion of ovary and
prostate from the other-solid-tumor (“Other”) category, our groupings are identi-
cal to those used by BEIR V.

*To obtain copies of this data set on DOS-formatted floppy disk, contact the RERF Publication
and Documentation Center, Administration and Support Section, 5-2 Hijiyama Park, Minami-ku,
Hiroshima, 732 Japan. Facsimile: 81-82-263-7279, There is a charge of US $50 per disk. Please specify
the type of disk required—3.5 or 5.25 in.
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Sex-specific and age-at-exposure-specific transmission factors listed on the
diskette were used to compute organ doses from the average whole-body gamma-
ray and neutron kerma estimates for each cell in the person-year table. As in the
BEIR V analyses, a dose equivalent in sievert obtained by summing the gamma-
ray organ dose and 20 times the neutron organ dose was used to allow for the
larger relative biological effectiveness (RBE) of neutrons. Since the neutron doses
received by A-bomb survivors were small, our results are not sensitive to the
choice of 20 for RBE. For separate or joint analysis of the three categories of
cancers it is preferable to use doses for organs representative of each category.
As in BEIR V, these are taken as “stomach” for digestive cancers, “lung” for
respiratory cancers, and “intestine” for other cancers.

In the analyses for this paper, we have not adjusted for dose-estimation errors®?
because such adjustments would have little impact on the inferences of interest
here and because we want to compare our results to those of BEIR V. The primary
effect of such adjustments would be to increase excess risk estimates by 5%—10%.
Dose estimates used in all analyses were computed using the original version of
Dosimetry System 1986 (DS86).°

In these analyses, as in BEIR V, data were restricted to exclude (1) follow-up
before 1955, to allow for a 10-year minimal latent period; (2) those with organ
doses above 4 Sv, due to nonlinearity in dose response above that level; and (3)
follow-up beyond 75 years of age, due to presumed inadequacy of death-certificate
information beyond that age. With these exclusions there remain 2153 cells with
nonzero time at risk. Although restriction (2) is important when focusing on the
values of linear risk estimates, it is less important when investigating effects of
sex and time. Some indication of the effect of dropping this restriction is given.

Appropriate statistical methods for joint analysis of risks for several types (or
classes) of cancer are remarkably straightforward in principle. The theory for this
is based on the idea of cause-specific hazard functions, as discussed in Kalbfleisch
and Prentice'® (Chapter 7), where it is shown that the likelihood function for such
models can be written as the product of type-specific terms and that each term is
identical to the likelihood obtained if that type were the only cause of death; that
is, deaths from other causes are treated as censored. This means that, when the
aim is simultaneous estimation of the risks for several types of cancer, problem-
atic assumptions regarding independent competing risks are not required. This
also means that, except for possible connections due to parameters in common to
different cause-specific hazards, the risk for each type of cancer can be estimated
as though it were the only type under consideration. We will provide details of
the implementation of this after setting the stage in terms of the standard
approach to analysis of these data.

The standard analyses of RERF cancer data are made using a grouped-data
version of conventional survival analysis methods, namely semiparametric rela-
tive risk regression (Cox regression).!%!! For analysis of a single type of cancer,
this leads to treatment of the number of cancer deaths in each cell of the
cross-tabulation described above as independent Poisson random variables.
Strictly speaking, the Poisson probability model is not in principle correct; with
certain approximations, however, the parameter estimates, their standard er-
rors, and goodness-of-fit tests corresponding to this model are the same as those
for an appropriate survival analysis formulation.’*' The primary approxima-
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tion leading to the Poisson model involves treating the cancer risks as constant
within follow-up intervals. Although this approximation alone leads to a likeli-
hood identical to that of a Poisson model, the conventional usage of these methods
also involves treating the rates as constant within cells defined by a cross-classi-
fication of follow-up time over other factors, such as age-at-exposure groups and
dose.

More precisely, analysis is made as though the number of cancer deaths D, in
thecellsc =1, ..., C of the cross-classified data are independent Poisson random
variables with means R, where R, is the person-years at risk and A, is the
cancer rate for the cell. The term A, which involves parameters to be estimated,
represents the model to be fit.

For joint analysis of several types of cancer, this approach for grouped data
generalizes as follows. For each cell of the table there are cancer deaths D, for
types & = 1, . . ., K. The aim is to model the rates, A,,. The theory for inference
about cause-specific hazard functions implies that this may be done as though all
the observations D, were independent Poisson random variables with means
R\ The treatment of observations on types as independent for each cell is not
based on an assumption but follows from this theory. The models for the rates A,
will typically have some parameters common to types and others that are
type-specific. Having all parameters type-specific would be equivalent to sepa-
rate analyses; having all parameters common would be equivalent to pooled
analyses.

In organizing the data for a joint analysis, cancer type is treated as a special
kind of factor that differs from the other factors used to define the cross-classifi-
cation in that person-years are accumulated for all persons at risk for each cancer
type of interest. In practical terms this means that separate person tables are
made for each type and that these tables are then appended to one another to
create the data set used in the analyses. Since separate tables are made for each
type, one can allow the dose variable (or other factors) to depend on type. Thus,
it is simple to use organ doses appropriate for each type of interest. For the
analyses in this paper, dose categories were determined by whole-body exposure
kerma, which does not depend on type, and then, as noted earlier, type-specific
organ dose estimates were computed using the mean gamma and neutron kerma
values for each cell of the cross-tabulation.

Once the expanded tabulation has been made, joint analyses can be done using
the same methods and software used at RERF.!® The only change is that the
cancer risk models depend upon type. Risks are modeled in terms of the available
covariates: cancer type (&), city (c), sex (s), calendar time and time since exposure
(), age at exposure (e), age at risk (@ = e + ), and dose (d,). The variable ¢ pertains
to secular trends in cancer risks when used in the background rate and to time
since exposure when used in the excess risk. Sincea = e + ¢, it is not possible to
distinguish fully between effects of all three of these variables; the variable a is
mainly used in background rates, and (e,t) in the excess risk. The excess risk for
cancers other than leukemia is remarkably linear in dose in the range 0—4 Sy 10
and we will only consider models of this form since the concern here is not with
extrapolation to low doses.
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Models for the cancer rate, background plus excess, for a given type or class of
cancer are usually taken as specializations of generic models of the following form

Hesat + dkeset (1)

or

Hesat 1+ dkpset] : (2)

The term p,, is the age-specific background risk. The terms ¢, and p,,, are,
respectively, the excess absolute risk and excess relative risk, per unit dose, for
given sex, age at exposure, and time since exposure. The dose variable (d;) is
subscripted to indicate explicitly that different doses can be used for different
cancer types. City differences in both relative and absolute excess risks are small
(not statistically significant) and were not included in the models used in this
report.

In fitting models in which the excess relative risk is constant in time, the
variation in background rates with city, sex, age at risk, and time (u,,) is
ordinarily accounted for by stratification. Although models with time-varying
relative risks can also be fitted in this way, we chose to focus on analyses in which
the background risk was modeled parametrically. Although it is straightforward
to use stratified models, we feel that clearer interpretations of time trends in the
relative risk are possible when parameter estimates for age trends in the back-
ground rates are available, In addition, the use of parametric background models
facilitates comparisons with excess absolute risk models, for which our current
software requires the use of fully specified models. In the models used here, the
logarithm of the cancer rate was modeled as linear in log age with sex, city, and
birth-cohort effects. The rate of increase in the rates with age was allowed to
depend on sex. Although there is some evidence for nonlinearity in the relation-
ships between log rate and log age, the restriction to linearity had little effect on
inferences about the excess relative risk. Model comparisons were based on
chi-square approximations to likelihood ratio tests, which provide more-reliable
inferences than do tests based on point estimates and standard errors.

Results

Effects of sex and age at exposure in time-constant relative risk models

We first consider models in which the excess relative risk per unit dose is
constant in time, given sex, and age at exposure. These models are cancer-
type-specific models, of the form of Equation (2), in which p,,,does not depend on ¢. Using
these models we investigate the variation of baseline relative risks (defined below), sex
effects, and age-at-exposure effects with type. After introducing the basic model and
some additional notation we describe a special parameterization designed to assess a
specific hypothesis about the nature of the effects of sex on the excess relative risk in
these data. We then present the results of a series of analyses that test for the presence
of the sex and age-at-exposure effects and for variability of these effects by type.

The specific model used here is of a form commonly used in both type-specific
and pooled analyses of the RERF cancer mortality data. This model can be
written
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Miesatl 1 + BrYsudendnl (3)

where f, is a baseline excess relative risk for type %, A,, is a modifier for sex
within each type, and §,, represents an age-at-exposure effect for each type. In
this context, the baseline refers to type-specific risks for arbitrarily defined
reference values of sex and age at exposure. Note that the baseline risk refers to
radiation effects and should not be confused with background rates, which are
rates in an unexposed population. In our models, the baseline risk is the un-
weighted geometric mean of the sex-specific risks for a person exposed at age 30 yr.

We were particularly interested in the sex effect since it is appears from
previous analyses of the LSS data that the substantial sex effect in the excess
relative risk may serve largely to offset sex effects in the background rates. That
is, there may be little or no sex effect in the absolute excess risks. This is an
important hypothesis, and joint analysis provides a better way to investigate it
than either pooled or separate analyses. Investigation of this in pooled analyses
cannot take advantage of the differences in background-rate sex effects among
cancer types. This limitation is avoided in separate analyses, but the estimation
of the type-specific sex effects is imprecise, and traditional methods offer no
formal method for assessing the significance of variation in the type-specific
estimates.

In terms of Equation (2), the hypothesis of interest regarding sex effects is, in
essence, that for each B, the produects ., ¥, do not depend upon s, since these
represent the contribution of sex effects to the absolute excess risk. Some
approximation must be made in formulating a general model useful for investi-
gating this, since the background rates p,,,,, do not factor adequately into a form
W, .. Primarily because the rates at which background rates increase with age
depend considerably on sex.

The approximation made here is as follows. For each cancer type we compute
a summary ratio, rr,(m:f), of the male background rate to the female background
rate as

rry (m:f) = DOkm/ROm
Do/ Ror (4)
where D, and Ry, are, respectively, the numbers of deaths from cancer k and
total person-years for males with DS86 total kerma less than 0.1 Gy and D,and

R, are the corresponding values for females. Then special values of the parame-
ters v,,, referred to as y9,, are defined so that for each type the product of Y,

and rry(m:f) does not depend on sex.
Finally, the relative risk in Equation (2) is re-expressed as

MhosarlL + BrO2R)%oxds) )

where 0 is a parameter to be estimated from the data. When 6 equals one this
model corresponds to the hypothesis that the sex effect in the relative risk offsets
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the sex ratio in background rates, as these were defined above. Values of 6 other
than one indicate a systematic departure from this hypothesis, and 0 equal to
zero corresponds to no sex effect in the excess relative risks. Also note that if
rr,(m:f) is identically equal to one, the sex effect parameter, 6, does not have a
unique value.

When the above model was fit to the data, the estimate of 8 was 1.04 + 0.60.
The likelihood ratio test of the hypothesis that 6 equals one against the alterna-
tive that it is some other value resulted in a P-value of .95. Type-specific
estimates of 0 are also of interest. These are

Digestive:1.09 + 0.84
Respiratory: 0.96 +0.84
Other: 1.60 £ 7.30

The large standard error for the Other cancer category arises because the sex
ratio in background rates is nearly one, in which case, as noted above, the issue
under discussion has little meaning. This analysis adds some support to the
interpretation that absolute excess risks do not depend on sex; however, this
hypothesis deserves further investigation.

In the remainder of this subsection we focus our attention on the comparison
of baseline risks by cancer type and age-at-exposure effects on the excess relative
risk. Following a standard statistical approach, we began with a simple relative-
risk (RR) model, [1 + Bd,], and assess the importance of effects in a model of the
form of Equation (3) by successively adding these effects to the model and
monitoring the improvement in fit. This is done by first adding an age-at-expo-
sure effect, followed by the sex effect, and then allowing these effects to depend

Table 1. Analysis of deviance for cancer type and effects of sex and age at exposure

Source of variation dfad Chi-square P-value

Age at exposure 1 13.80 .0002
Hypothesized sex effect (8 = 1)° 1 3.35 .07
All type effects ¥ 413 .76
Decomposed as

Type (baseline) 2 0.48 79

Type by age at exposure 2 3.58 A7

Type by sex® 3 0.07 .99

2 df = degrees of freedom.

bThis is a lest of @ = 0 versus 6 = 1, which is negligibly different from that of testing 6 = 0
varsus the maximum likelihood estimate 8 = 1.04.

“This alternative allows sex effects to vary ireely by cancer type, as a departure from
the hypothesized sex effect.
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on type. The aim is to find the simplest model that fits the data. The results are
summarized in Table 1. The chi-square statistics in the table are likelihood ratio
tests for the significance of the effect indicated in the Source of variation column.

This analysis shows that within the class of models in which the excess relative
risk per unit dose is constant in time, for given type, sex, and age at exposure,
there are no statistically significant effects associated with cancer type for the
three categories considered. It is again emphasized that these categories were
not chosen by the BEIR V committee because there is some reason to expect
differences but rather to avoid using more-detailed, but less-precise type-specific
estimates and to reduce effects of misclassification on death certificates. Inter-
pretation of results for the Other cancer category is particularly difficult.

The restriction to those with dose less than 4 Sv has little effect on these
results. The largest change is that the P-value for the type by age-at-exposure
effect, that is, different slopes by type for log 3,, versus e, increases to .26.
Although this effect is not statistically significant in either analysis, it is the only
type-related effect for which there is even marginal evidence. It seems likely, on
closer examination, that this effect has to do with something rather special about
respiratory cancers. Only for this category is there any apparent difference
between sexes for the age-at-exposure effect: women having an effect that is not
dissimilar to that for other categories and men having a somewhat different
effect. Such a distinction might be related to effects of cigarette smoking and will
be explored elsewhere.

Effects of time on relative risk

We now turn to analyses of trends, with time since exposure, in the excess
relative risk, focusing on evidence for a trend independent of cancer type and for
differences by type in such trends. Joint analysis is more appropriate than a
pooled analysis for this issue since differences in age-specific background risks
may interfere with inferences about a common time trend in the relative risks in
a pooled analysis. Also, only in this joint approach can one use models for excess
risk in which some parameters depend on cancer type and others are common
across types.

The model of interest here takes the form

I'I'kcmt[l + ﬁkfvs:kae;kétzkdkl 3 (6)

where log (£,,) is linear in log (¢), with slope possibly depending on k. This is the
most commonly used form of model for time trends in the excess relative risk.
The sex effect is taken as discussed above, fixing v,, = Y2, ; age-at-exposure
effects, 8, , are modeled as described following Equation (3). Even though differ-
ences in the B, are not significant, these parameters must be free to vary in
models in which the slope of log (§,;) is allowed to depend on k. As noted earlier,
parametric background-rate models were used for these analyses. In these
models, the logarithm of the background rates were linear in log (a) with
sex-specific slopes and intercepts. The background model also included a city
effect not dependent on sex.
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Table 2. Analysis of deviance for time trends in the excess relative risks using a
parametric background model

Source of variation di @ Chi-square P-value
Common time trend 1 1.04 31
Differences in time 2 0.53 T7

trend by type

adf = degrees of freedom.

Table 2 presents an analysis of deviance for the time trends. There is no
indication of statistical significance either for a trend in time common to types or
for differences by type in such trends. These calculations are made using a model
in which the age-at-exposure effects, 3,,, do not depend on k&, but the results are
similar even if this interaction is included.

Despite the lack of statistical significance, the estimated time trends have an
interesting feature that can be seen by comparing the slope estimates for the
background and excess risks. The estimates of the slope of the log background
rates in log age, averaged over sex, are 5.1 for digestive, 6.3 for respiratory, and
4.1 for Other. These differences are statistically highly significant. The estimates
of slopes in log excess relative risk with log time are 0.37 + 0.66 for digestive,
-1.03 + 0.97 for respiratory, and —0.26 £ 0.94 for Other. The point estimates of
the time trend in the excess relative risk are roughly inversely related to the rate
of increase in the background rates with age. This pattern of type-specific trends
suggests, rather weakly, that the temporal pattern of the absolute excess risk
may be more similar over types than that for the relative risks, and we return to
this issue later in this section. When a model with a common time trend in the
excess relative risk is fit to the data, the slope estimate is —0.53 + 0.50.

The results of analyses in which a stratified-background-rate model was used
are similar to those shown in Table 2. The primary change is that inclusion of a
type by age-at-exposure effect reduces the P-value for a common trend with time
to P = .14. The point estimates for the time trends are similar to those given
above. Again, the restriction to those with dose less than 4 Sv has little effect on
these results.

Comparison to BEIR V models

The BEIR V committee recommended, aside from issues involving low doses,
use of models for these three categories of cancer that have relative risks of the
form

(1 + BaYsaOerbendrl - (7

Their approach involved exploring, separately for each type, forms for §,, and
(.4 and electing a “best-fitting” form, including possible omission of either of these
or of y,,. The nature of the resulting models can be described roughly as follows:

10
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Digestive
a) sex effect

b) age-at-exposure effect “step-function-like,” dropping mark-
edly at ages between 25-35 yr and constant outside this
range

¢) relative risk constant in time
Respiratory

a) sex effect
b) no age-at-exposure effect

c¢) decreasing relative risk with time since exposure
Other

a) no sex effect

b) age-at-exposure effect with logarithm decreasing linearly
above age 10 yr

¢) relative risk constant in time

Exploratory analyses reveal that these models do indeed describe the data
reasonably well within the class of models described by Equation (7). A single
parameter carrying the above age-at-exposure effect for digestive cancers does
improve the fit relative to a log linear trend. There is a larger negative trend with
time since exposure for respiratory cancers than for the other types. The BEIR
committee realized that it was not statistically significant but chose to include
that term largely because of further evidence for such an effect in the data on a
cohort of patients irradiated to treat ankylosing spondylitis. 17 The estimated sex
effect for the Other category is negligible. For this class the change in slope at
10 yr for the age-at-exposure effect was probably selected due to the large, but
imprecise, estimate of relative risk for the very young that would arise without
this feature. The BEIR V definition of the other-solid-tumor category is slightly
different from that used here since we have excluded cancer of the ovary and
prostate, but this has little effect.

Although the BEIR V models may be quite detailed, we have doubts about their
usefulness in representing conclusions about the nature of radiogenic cancer
risks. In particular, it seems likely that sampling variations have been overem-
phasized in the selection of specific models. Simpler descriptions may reflect the
actual risks at least as accurately and may be more useful in many respects, such
as in comparisons with the results of other studies or with the results of
subsequent analyses of these data.

It is of interest to compare the BEIR V model to simpler descriptions, based on
the model suggested by Table 1, with the relative risk taking the form

1+ BYud.dsl » (8)

where B is a common baseline excess relative risk independent of type, the sex
effect is fixed at values offsetting sex ratios in background rates, and log 8, is
linear with slope independent of type. This model effectively has two parameters,
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since the sex effect is not estimated from the apparent excess but from the large
number of background cases. We do not claim that the Equation (8) model is the
“true model.” Rather, in the standard manner of statistical significance testing,
we aim to assess the evidence against it provided by the BEIR V analysis.

The likelihood ratio chi-square statistic measuring the improvement of fit to
the BEIR V model relative to the fit of the model described by the Equation (8)
madel is 10.2. The number of degrees of freedom to associate with this is not
precisely defined. It is at least six, since there are eight explicit parameters in
the BEIR V model and two in the Equation (8) model. But, the BEIR V model was
arrived at by exploratory analysis, in which many parameters were considered,
and the final model was chosen to include the most significant ones. The “step-
function-like” effect for age at exposure in digestive cancers would, in particular,
require a rich a priori parametric specification to arise formally. If that effect is
modeled in the more conventional way, with log §,,, linear in e, the deviance for
the BEIR V model increases by 5.3, and the chi-square statistic comparing the
BEIR V model to the Equation (8) model reduces to 4.9. We believe it is fair to
say that, if indeed the Equation (8) model were correct, the chance that the
approach of the BEIR V committee would have led to a model fitting better than
the Equation (8) model, to the extent of a chi-square of 10.2, would exceed 50%.

Models for the excess absolute risk

There are several reasons to consider explicit models for the excess absolute
risk, as a function of time since exposure. The excess absolute risk has been seen
to differ less by sex than dose the excess relative risk. Although the constant
relative-risk model provides a useful summary of the data, there is little, if any,
reason to believe that it is the “true model.” There is some evidence, although not
strong, that the excess relative risk may decrease with time, especially in the
younger survivors.*!® Models for the excess relative risk lose much of their appeal
and interpretability when the relative risk is taken to vary with time, in which
case descriptions of the time dependence of the excess absolute risk may be at
least as useful.

It is useful to formulate excess absolute risk models of the form:

Miesar + BrYsudentende - 9)

The conventional approach involves the use of a parametric specification of the
background rates. In these analyses we have used a background model of the
same form as presented for the Equation (6) model.

We consider models for the absolute excess risk of the form of the Equation (9)
model with log (g,;) linear in log (¢), where the slope may depend on k. As in
Equation (3) we take log (3,;) to be linear in e. Further, since the analyses
summarized in Table 2 provide no evidence against the hypothesis that the
baseline excess relative risks are independent of type, we express the models so
as to give this hypothesis prominence. This is done using an approach analogous
to the treatment of sex effects in the relative-risk models. That is, the “hypothe-
sized” type effect will correspond to constraining the ratios of the B, in Equa-
tion (9) to agree with the ratios of background risks for the three cancer
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categories. These ratios, as computed from that portion of the LSS subcohort with
DS86 dose estimates less than 0.1 Sv, are 1.98 for Digestive:Other and 0.50 for
Respiratory:Other.

Table 3 presents an analysis of deviance table, describing evidence for succes-
sively added effects in the Equation (9) model. The P-value of .01 for “Hypothe-
sized type effect” pertains to a test of no dose effect against the alternative of an
effect of the hypothesized form; that is, that the excess for each type is propor-
tional to the background risk for that type. The P-value of .92 for “Type (depar-
ture from hypothesis)” indicates that there is no evidence at all against the
hypothesized form for this. There is a strong age-at-exposure effect in the
absolute excess risk, opposite in sense to that found in the relative excess risk.
That is, at any given time since exposure those who were older at exposure have
greater absolute excess risks. There is a strongly increasing time-since-exposure
effect and, as indicated earlier, no significant sex effect. Aside from the dose
effect, which includes type effects of the hypothesized form, there is no statisti-
cally significant evidence of type effects in the absolute excess risk. Type-specific
parameter estimates, for effects of age at exposure and time since exposure, show
considerable variation, but they are not well enough estimated for these differ-
ences to be statistically significant.

This analysis indicates there is no significant lack of fit to a model for the
absolute excess risk of form

Boad.e, dy (10)

where the p{ are fixed numbers corresponding to ratios of background rates, log
(8,) is linear in e, and log (g,) is linear in log (¢), where neither slope depends on

Table 3. Analysis of deviance table for excess absolute risk models

Source of variation df? Chi-square P-value

Dose effect (of hypothesized i 1 6.57 .01

form)
Age at exposure (log linear) 1 16.24 .0001
Time since exposure (log linear) 1 11.68 .0006
Sex 1 0.003 .98
All other type effects 7 6.65 57
Decomposed as

Type (departure from 2 0.16 .92

hypothesis)

Type by age at exposure 2 2.94 .23

Type by sex 2 0.42 .81

Type by time since exposure 2 3.13 32

adf = degrees of freedom.

bUnder the hypothesized dose-response model, the excess absolute risk for each type
is proportional to the average background risk for that type.
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type. Comparison of this model to the Equation (6) model for the relative excess
risk is discussed below.

Discussion and Conclusions

We preface this section with some perspective on the evolution of statistical
methods for the A-bomb survivor data. The methods developed and used during
the 1970s were Mantel-Haenszel-like procedures designed for testing for the
presence of a significant dose response.!® Since there was clearly a significant
effect for leukemia and for all cancers except leukemia together, the primary use
of these methods was in analyses of data for specific cancer types. These methods
are not readily extended from hypothesis testing to parameter estimation. The
estimation methods used, eg, by the BEIR III committee,? involved regression
analyses of the data after “collapsing” over the follow-up time. These regressions,
which were usually carried out separately for various sex and age-at-exposure
groups, were done using the number of cases and person-years at risk for the
entire follow-up without regard to age at risk and time since exposure. This
approach has two primary inadequacies: (1) it does not lend itself well to studying
effects of time since exposure, which has become an issue of primary interest, and
(2) it does not properly control for age at risk, which dominates all other factors
(including radiation effects) in affecting cancer rates.

By the late 1970s it became clear that survival analysis methods developed by
Cox,!! being ideally suited for dealing with the two points raised above, should
form the basis for analyses of these data. Implementation of these methods for
such a large data set was, however, not feasible without further development. In
the early 1980s, based on an important observation by Holford'? on connections
between survival analysis for grouped data and Poisson regression models, the
authors developed methods and computer programs for the analysis these
data_20—24

Others'%1425-28 were also developing similar methods for cohort studies more
generally. The new methods and software came into full use for the RERF cancer
data in LSS Report 10,5 and since then they have been the primary statistical
basis for all RERF reports and many other reports on radiation effects on cancer.

The ability to carry out more-incisive analyses, particularly in regard to effects
of age at exposure and time since exposure, may have led to increased emphasis
on pooled analyses of all cancers except leukemia. The weaknesses of such pooling
were to an extent understood. However, even more clear was the dilemma that,
with some exceptions such as breast cancer, the data on specific cancer types are
too limited to present a clear picture from these more-detailed analyses. The
possibilities for overfitting the data, that is, drawing distinctions for which there
is no statistical support, is one of the most serious problems facing those who
analyze the RERF cancer data.

We feel that the type of statistical methods presented here are naturally suited
to dealing with these difficulties. They do not remove them but provide tools that,
if thoughtfully used, may allow progress on these difficult issues. This application
has been mainly for illustrative purposes. The remainder of the discussion is
oriented toward more-general use of these methods.
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One reason that these methods have not been used before is that they are
computationally intensive. The cross-tabulation used by the BEIR V committee,
after the three restrictions described earlier, contained 2153 cells. For our
analyses this was simply “replicated” for each of the three cancer categories,
giving 6459 cells. This would have been difficult to deal with 10 yr ago, but now
the fitting of models such as those used in this report takes at most a few minutes
on a fast personal computer.

With some modifications, it would be computationally feasible to carry out
joint analyses for up to about 10 types of cancer. The tabulation used here has 10
dose categories, but for fitting models linear in dose about half as many would
suffice. Other reorganizations of the cross-tabulation might also be useful. The
more-serious difficulty is not the size of the cross-tabulation involved but the
potential complexity of models and the number of parameters to be considered.

The specific software used (the AMFIT program from the EPICURE risk
modeling package) is important in this, since it allows for large numbers of
stratum parameters and flexible model formulation. This computer program is
especially well suited for models such as the Equation (6) model, in which the
excess risk involves products of terms. Analysis with parametric background
models rather than stratification, as used for Table 2, requires more computation.
For joint analysis of larger numbers of types, it would probably be best to fit
background models for each type in separate analyses, using the conventional
simple model of recent RERF reports for the excess relative risk. Then, since the
parameter estimates for the background models change little under different
models for the excess risk, these could be taken as fixed for the joint analysis.

If this were done the proliferation of parameters would be mainly of concern
only for the dose-response part of the model, and here the computational difficul-
ties are less critical than the statistical and scientific issues. Strategies are
needed for the systematic investigation of the issues of interest, in a way likely
to succeed. For example, further examination of the “hypothesized” sex effect
discussed above would be useful. It seems unlikely that an analysis of the form
given in Table 1, for some collection of 10 categories, eg, will show any statisti-
cally significant type effects. As the number of types increases, the statistical
power of tests becomes more diffuse and the number of cases per type will be
smaller as well.

Failure to find statistically significant type-specific differences does not mean
that they do not exist. However, a recognition on biological grounds that there
are likely to be real differences should not lead to uncritical acceptance of poorly
estimated apparent differences. There is a substantial scientific and statistical
challenge in dealing with these issues. The methods suggested here seem espe-
cially well suited to this endeavor, but progress will depend on using them
carefully and creatively.

Much of the gain in type-specific modeling will be better understanding of basic
forms of models for the excess risk. For example, the observation made previously
in pooled analyses that the sex effect in the excess relative risk is small becomes
more meaningful when it is seen, as was shown earlier, that this is true for each
of the three cancer categories considered. Comparisons of simple models for
relative and absolute excess risks are much-more incisive when these models are
type-specific.
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It is remarkable that neither the simple two-parameter model for the relative
excess risk,

1+ ByY248.ds] , (11)

nor the simple three-parameter model for the absolute excess risk discussed
before,

Bppd.ed (12)

is significantly improved by further distinctions among the cancer types consid-
ered here. Although suitably general relative and absolute risk models provide
similar fits to the LSS data to date, models of the form of the Equation (11) model
are more in line with current interpretations of the LSS data. Pooled analyses
are often interpreted in terms of relative risks, and such models were the basis
of the separate analyses in BEIR V.

The model represented by Equation (11) appears to be slightly simpler than
that represented by Equation (12), since the latter requires the term g, to describe

the increase in absolute excess risk with time since exposure. Although the
Equation (11) model is certainly useful in providing a succinct description of the
data, we see no statistical or biological reason to think that it is any more true
than the Equation (12) model. The latter is also quite simple and provides a
description of the data that may be equally important. Moreover, the apparent
complexity of the Equation (12) model is mitigated by the fact that a primary
issue from the viewpoint of the Equation (11) model is possible evidence of
additional dependence on time since exposure. Models for the excess relative risk
with such time dependence are no simpler, and, indeed, can be harder to
interpret, than those for the absolute excess risk.

The examples in this report were intended mainly to illustrate the methods
for type-specific analyses and to make some points regarding the BEIR V models.
They do not go far towards what might be learned in cancer-type-specific analy-
ses, largely due to inadequacies in the classification of cancers used. Much more
might be learned through application of these methods to data on cancer inci-
dence in which diagnoses are more accurate and in which categories can be used
that have a more-rational biological basis. Work of this nature will be carried out
in the near future.
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