RERF Report No. 1-93

G-banding analysis of radiation-induced chromosome damage in lymphocytes of Hiroshima atomic-bomb survivors

Ohtaki K, Nakashima E
Jpn J Hum Genet 37:245-62, 1992

Summary

This report describes the G-banding analysis of somatic chromosomes in lymphocytes from 63 atomic-bomb survivors in Hiroshima to determine the type and frequency of radiation-induced chromosome aberrations. Summary findings are as follows: (1) The cells with stable-type chromosome aberrations (Cs cells) predominated among the aberrant cells and showed a dose-dependent increase. All stable chromosome aberrations were classified into 9 types: reciprocal translocations, translocations of complex type, insertions, complex exchanges, peri- and paracentric inversions, terminal and interstitial deletions, and unidentified rearrangements. Aberration frequencies increased with increasing dose for all aberration categories. Among the chromosome aberrations classified, reciprocal translocations predominated in all dose ranges. The frequencies of complex aberrations were low at the low-dose level but increased sharply as dose increased. (2) The linear model was fitted to test the dose-response relationship for Cs-cell frequencies. With a constant neutron relative biological effectiveness of 10, an estimated linear slope of 15.2%/Sv was obtained for Dosimetry System 1986 bone-marrow dose with an intercept of 2.9% at dose 0. The present observation confirmed a wide variability of Cs-cell frequencies among individual survivors in every dose category. (3) Statistical analysis of data on 3370 break sites showed good correlations between relative DNA content and the distribution of chromosome breaks involved in translocations, although the involvement of chromosome 1 is significantly higher, for as-yet-unknown reasons.

戻る